
Hands-on Exercise 6: Handling and Visualising
Geospatial Data with R

Dr. Kam Tin Seong

Assoc. Professor of Information Systems

School of Computing and Information Systems,

Singapore Management University

2020-2-15 (updated: 2022-05-21)

Content
Mapping Geospatial Point Data with R

Choropleth Mapping with R

2 / 39

In this hands-on exercise, you will learn how to create
proportional symbol map by using tmap package.

By the end of this hands-on exercise, you will be
able:

to import an aspatial data in R by using readr
pakage,
to convert it into simple point feature by
using sf package, and
to create interactive proportional symbol
maps by using tmap package.

Ex 1:Mapping Geospatial Point Data with R

3 / 39

Write a code chunk to check, install and launch readr,
sf and tmap packages of R

The solution:

Getting Started

4 / 39

Next, you are required to write a code chunk to
import SGPools_svy21.csv into R by using
read_csv() of readr package. You can called the
tibble data frame object sgpools.

The solution:

After importing the data file into R, it is important
for us to review the data object.

Importing the data

5 / 39

The code chunk on the right converts sgpools data
frame into a simple feature data frame by using
st_as_sf() of sf packages

Things to learn from the arguments:

The coords argument requires you to provide the
column name of the x-coordinates first then
followed by the column name of the y-
coordinates.
The crs argument required you to provide the
coordinates system in epsg format. EPSG: 3414 is
Singapore SVY21 Projected Coordinate System.
You can search for other country's epsg code by
refering to epsg.io.

sgpools_sf <- st_as_sf(

 sgpools,

 coords = c("XCOORD",

"YCOORD"),

 crs= 3414)

Creating a sf data frame

6 / 39

https://r-spatial.github.io/sf/reference/st_as_sf.html
https://epsg.io/3414
https://epsg.io/

The code chunk below is used to create an interactive point symbol
map.

tmap_mode("view")

tm_shape(sgpools_sf)+

tm_bubbles(col = "red",

 size = 1,

 border.col = "black",

 border.lwd = 1)

Things to learn from the code chunk:

tmap_mode() is used to switch the display from static mode (i.e.
"plot") to interactive mode (i.e. "view").

tm_shape() is used to create a tmap-element that specifies a
spatial data object (i.e. point).

tm_bubble() is used to create a tmap-element that draws
bubbles or small dots. Both colors and sizes of the bubbles can be
mapped to data variables.

Ploting a point symbol map

7 / 39

+

−

Leaflet | Tiles © Esri — Esri, DeLorme, NAVTEQ

https://leafletjs.com/

To draw a proportional symbol map, we need to
assign a numerical variable to the size visual
attribute. The code chunks below show that the
variable Gp1Gp2Winnings is assigned to size visual
attribute.

tm_shape(sgpools_sf)+

tm_bubbles(col = "red",

 size = "Gp1Gp2 Winnings",

 border.col = "black",

 border.lwd = 0.5)

Lets make it proportional

8 / 39

+

−

Leaflet | Tiles © Esri — Esri, DeLorme, NAVTEQ

https://leafletjs.com/

The proportional symbol map can be further
improved by using the colour visual attribute. In the
code chunks below, OUTLET_TYPE variable is used as
the colour attribute variable.

tm_shape(sgpools_sf)+

tm_bubbles(col = "OUTLET TYPE",

 size = "Gp1Gp2 Winnings",

 border.col = "black",

 border.lwd = 0.5)

The solution:

Lets give it a different colour

9 / 39

+

−

OUTLET TYPE
 Branch

 Outlet

Leaflet | Tiles © Esri — Esri, DeLorme, NAVTEQ

https://leafletjs.com/

An impressive and little-know feature of tmap's view
mode is that it also works with faceted plots. The
argument sync in tm_facets() can be used in this case
to produce multiple maps with synchronised zoom
and pan settings.

tm_shape(sgpools_sf) +

 tm_bubbles(col = "OUTLET TYPE",

 size = "Gp1Gp2 Winnings",

 border.col = "black",

 border.lwd = 1) +

 tm_facets(by= "OUTLET TYPE",

 nrow = 1,

 sync = TRUE)

I have a twin brothers :)

10 / 39

Ex 2: Choropleth Mapping with R
In this hands-on exercise, you will learn how to plot choropleth maps by using tmap
package.

By the end of this hands-on exercise, you will be able:

to import an aspatial data in R by using readr pakage,
to import geospatial data (ESRI shapefile) into R as simple feature objects using sf
package,
to perform data wrangling using dplyr and tidyr packages,
to plot choropleth maps using tmap package.

11 / 39

https://r-spatial.github.io/sf/index.html

The Data
Two data set will be used to create the choropleth map, they are:

URA Master Plan subzone boundary in shapefile format (i.e. MP14_SUBZONE_WEB_PL).
This is a geospatial data. It consists of the geographical boundary of Singapore at the
planning subzone level. The data is based on URA Master Plan 2014.

Singapore Residents by Planning Area/Subzone, Age Group and Sex, June 2000 - 2018 in
csv format (i.e. respopagsex2000to2018.csv). This is an aspatial data fie. Although it does
not contain any coordinates values, but it's PA and SZ fields can be used as unique
identifiers to georeference to MP14_SUBZONE_WEB_PL shapefile.

12 / 39

Importing geospatial data into R
The code chunk below uses the st_read() function of sf package to import MP14_SUBZONE_WEB_PL shapfile into R
as a simple feature data frame called mpsz.

mpsz <- st_read(dsn = "data/geospatial",

 layer = "MP14_SUBZONE_WEB_PL")

Reading layer `MP14_SUBZONE_WEB_PL' from data source

`D:\tskam\ISSS608\Hands-on_Ex\Hands-on_Ex07\data\geospatial'

using driver `ESRI Shapefile'

Simple feature collection with 323 features and 15 fields

Geometry type: MULTIPOLYGON

Dimension: XY

Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33

Projected CRS: SVY21

13 / 39

https://r-spatial.github.io/sf/reference/st_read.html

Importing attribute data into R
Next, we will import respopagsex2000to2018.csv file into RStudio and save the file into an R dataframe called
popagsex.

The task will be performed by using read_csv() function of readr package as shown in the code chunk below.

popagsex <- read_csv("data/aspatial/respopagsex2000to2018.csv")

14 / 39

Before a thematic map can be prepared, you need to
preform the following data preparation.

Extracting 2018 records only.
Extracting Males records only.
Deriving three new variables, namely: Young,
Economic Active and Aged.

The following data wrangling and transformation
functions will be used:

spread() of tidyr package, and
mutate(), filter(), and select() of dplyr
package

The code chunk:

popagsex2018_male <- popagsex %>%

 filter(Sex == "Males") %>%

 filter(Time == 2018) %>%

 spread(AG, Pop) %>%

 mutate(YOUNG = `0_to_4`+`5_to_9`+`10_to_14`+

`15_to_19`+`20_to_24`) %>%

mutate(`ECONOMY ACTIVE` = rowSums(.[9:13])+

rowSums(.[15:17]))%>%

mutate(`AGED`=rowSums(.[18:22])) %>%

mutate(`TOTAL`=rowSums(.[5:22])) %>%

mutate(`DEPENDENCY` = (`YOUNG` + `AGED`)

/`ECONOMY ACTIVE`) %>%

mutate_at(.vars = vars(PA, SZ),

 .funs = funs(toupper)) %>%

 select(`PA`, `SZ`, `YOUNG`,

 `ECONOMY ACTIVE`, `AGED`,

 `TOTAL`, `DEPENDENCY`) %>%

 filter(`ECONOMY ACTIVE` > 0)

Data Preparation

15 / 39

Joining the attribute data and geospatial data
Next, left_join() of dplyr is used to join the geographical data and attribute table using
planning subzone name e.g. SUBZONE_N and SZ as the common identifier.

mpsz_agemale2018 <- left_join(mpsz,

 popagsex2018_male,

 by = c("SUBZONE_N" = "SZ"))

16 / 39

The easiest and quickest to draw a choropleth map
using tmap is using qtm(). It is concise and provides
a good default visualisation in many cases.

The code chunk below will draw a cartographic
standard choropleth map as shown below.

tmap_mode("plot")

qtm(mpsz_agemale2018,

 fill = "DEPENDENCY")

Things to learn from the code chunk above:

tmap_mode() with "plot" option is used to
produce a static map.

fill argument is used to map the attribute (i.e.
DEPENDENCY)

Plotting a choropleth map quickly by using qtm()

17 / 39

The basic building block of tmap is tm_shape()
followed by one or more layer elemments such as
tm_fill() and tm_polygons().

In the code chunk below, tm_shape() is used to
define the input data (i.e mpsz_agmale2018) and
tm_polygons() is used draw the planning subzone
polygons

tm_shape(mpsz_agemale2018) +

 tm_polygons()

Be warned: The "+" sign should be place at the end of
a code line and not at the front of a code line.

Drawing a base map

18 / 39

To draw a choropleth map showing the geographical
distribution of a selected variable by planning
subzone, we just need to assign the target variable
such as DEPENDENCY to tm_polygons().

tm_shape(mpsz_agemale2018)+

 tm_polygons("DEPENDENCY")

Things to learn from tm_polygons():

By default, 5 bins will be used.
The default data classification method used is
called "pretty".
The default colour scheme used is "YlOrRd" of
ColorBrewer. You will learn more about the color
palette later.
By default, Missing value will be shaded in gray.

Drawing a choropleth map using tm_polygons()

19 / 39

Actually, tm_polygons() is a wrapper of tm_fill()
and tm_border(). tm_fill() shades the polygons
by using the default colour scheme and
tm_borders() adds the borders of the shapefile
onto the choropleth map.

The code chunk below draw a choropleth map by
using tm_fill() alone.

tm_shape(mpsz_agemale2018)+

 tm_fill("DEPENDENCY")

Notice that the planning subzones are shared
according to the respective dependecy values

Drawing a choropleth map using tm_fill() and tm_border()

20 / 39

To add the boundary of the planning subzones,
tm_border() will be used as shown in the code
chunk below.

tm_shape(mpsz_agemale2018)+

 tm_fill("DEPENDENCY") +

 tm_borders(lwd = 0.1,

 alpha = 1)

Notice that light-gray border lines have been added
on the choropleth map.

lwd = border line width. The default is 1,
alpha = transparency number between 0 (totally
transparent) and 1 (not transparent). By default,
the alpha value of the col is used (normally 1),
col = border colour, and
lty = border line type. The default is "solid".

Drawing a choropleth map using tm_border()

21 / 39

Most choropleth maps employ some method of data
classification. The point of classification is to take a
large number of observations and group them into
data ranges or classes.

tmap provides a total ten data classification methods,
namely: fixed, sd, equal, pretty (default), quantile,
kmeans, hclust, bclust, fisher, and jenks.

To define a data classification method, the style
argument of tm_fill() or tm_polygons() will be
used.

The code chunk below shows a quantile data
classification with 8 classes are used.

tm_shape(mpsz_agemale2018)+

 tm_fill("DEPENDENCY",

 n = 8,

 style = "quantile") +

 tm_borders(alpha = 0.5)

Data classification methods of tmap

22 / 39

Comparing Quantile and Equal Interval
In the code chunk below, quantile and equal data classification methods are used.

Notice that the distribution of quantile data classification method are more evenly distributed then equal data
classification method.

23 / 39

tmap supports colour ramps either defined by the
user or a set of predefined colour ramps from the
RColorBrewer package.

To change the colour, we assign the preferred colour
to palette argument of tm_fill() as shown in the
code chunk below.

tm_shape(mpsz_agemale2018)+

 tm_fill("DEPENDENCY",

 n = 6,

 style = "quantile",

 palette = "Blues") +

 tm_borders(alpha = 0.5)

Notice that the choropleth map is shaded in blue.

Colour Scheme

24 / 39

To reverse the colour shading, add a "-" prefix.

tm_shape(mpsz_agemale2018)+

 tm_fill("DEPENDENCY",

 style = "quantile",

 palette = "-Blues") +

 tm_borders(alpha = 0.5)

Notice that the colour scheme has been reversed.

More about colour

25 / 39

Map Layouts
Map layout refers to the combination of all map elements into a cohensive map. Map elements include among
others the objects to be mapped, the title, the scale bar, the compass, margins and aspects ratios, while the colour
settings and data classification methods covered in the previous section relate to the palette and break-points used
to affect how the map looks.

26 / 39

Map Legend
In tmap, several legend options are provided to change the placement, format and appearance of the legend.

tm_shape(mpsz_agemale2018)+

 tm_fill("DEPENDENCY",

 style = "quantile",

 palette = "Blues",

 legend.hist = TRUE,

 legend.is.portrait = TRUE,

 legend.hist.z = 0.1) +

 tm_layout(main.title = "Distribution of Dependency Ratio by planning subzone \n(Quantile classific

 main.title.position = "center",

 main.title.size = 1,

 legend.height = 0.45,

 legend.width = 0.35,

 legend.outside = FALSE,

 legend.position = c("right", "bottom"),

 frame = FALSE) +

 tm_borders(alpha = 0.5)

27 / 39

Map Legend
The output map

28 / 39

tmap allows a wide variety of layout settings to be
changed. They can be called by using tmap_style().

The code chunk below shows the classic style
is used.

tm_shape(mpsz_agemale2018)+

 tm_fill("DEPENDENCY",

 style = "quantile",

 palette = "-Greens") +

 tm_borders(alpha = 0.5) +

 tmap_style("classic")

Map style

29 / 39

Cartographic Furniture
Beside map style, tmap also also provides arguments to draw other map furniture such as compass, scale bar and
grid lines.

In the code chunk below, tm_compass(), tm_scale_bar() and tm_grid() are used to add compass, scale bar
and grid lines onto the choropleth map.

tm_shape(mpsz_agemale2018)+

 tm_fill("DEPENDENCY",

 style = "quantile",

 palette = "Blues",

 title = "No. of persons") +

 tm_layout(main.title = "Distribution of Dependency Ratio \nby planning subzone",

 main.title.position = "center",

 main.title.size = 1.2,

 legend.height = 0.45,

 legend.width = 0.35,

 frame = TRUE) +

 tm_borders(alpha = 0.5) +

 tm_compass(type="8star", size = 2) +

 tm_scale_bar(width = 0.15) +

 tm_grid(lwd = 0.1, alpha = 0.2) +

 tm_credits("Source: Planning Sub-zone boundary from Urban Redevelopment Authorithy (URA)\n and Pop

 position = c("left", "bottom")) 30 / 39

Cartographic Furniture
The output plot

To reset back to the default style, the code chunk below should be used..

tmap_style("white")

31 / 39

Drawing Small Multiple Choropleth Maps
Small multiple maps, also refered to facet maps, are composed of many maps arrange side-by-side, and sometimes
stacked vertically. Small multiple maps enable the visualisation of how spatial relationships change with respect to
another variable, such as time.

In tmap, small multiple maps can be plotted in three ways:

by assigning multiple values to at least one of the asthetic arguments,
by defining a group-by variable in tm_facets(), and
by creating multiple stand-alone maps with tmap_arrange().

32 / 39

In this example, small multiple choropleth maps are
created by defining ncols in tm_fill().

tm_shape(mpsz_agemale2018)+

 tm_fill(c("YOUNG", "AGED"),

 style = "equal",

 palette = "Blues") +

 tm_layout(legend.position = c("right",

"bottom")) +

 tm_borders(alpha = 0.5) +

 tmap_style("white")

By assigning multiple values to at least one of the aesthetic arguments

33 / 39

In this example, small multiple choropleth maps are
created by assigning multiple values to at least one of
the aesthetic arguments

tm_shape(mpsz_agemale2018)+

 tm_polygons(c("DEPENDENCY","AGED"),

 style = c("equal", "quantile"),

 palette = list("Blues","Greens")) +

 tm_layout(legend.position = c("right",

"bottom"))

By assigning multiple values to at least one of the aesthetic arguments

34 / 39

In this example, multiple small choropleth maps are
created by using tm_facets().

tm_shape(mpsz_agemale2018) +

 tm_fill("DEPENDENCY",

 style = "quantile",

 palette = "Blues",

 thres.poly = 0) +

 tm_facets(by="REGION_N",

 free.coords=TRUE,

 drop.shapes=TRUE) +

 tm_layout(legend.show = FALSE,

 title.position = c("center",

"center"),

 title.size = 20) +

 tm_borders(alpha = 0.5)

By defining a group-by variable in tm_facets()

35 / 39

In this example, multiple small choropleth maps are
created by creating multiple stand-alone maps with
tmap_arrange().

youngmap <- tm_shape(mpsz_agemale2018)+

 tm_polygons("YOUNG",

 style = "quantile",

 palette = "Blues")

agedmap <- tm_shape(mpsz_agemale2018)+

 tm_polygons("AGED",

 style = "quantile",

 palette = "Blues")

tmap_arrange(youngmap,

 agedmap,

 asp=1,

 ncol=2)

By creating multiple stand-alone maps with tmap_arrange()

36 / 39

By creating multiple stand-alone maps with tmap_arrange()
The output choropleth maps

37 / 39

Mappping Spatial Object Meeting a Selection Criterion
.large[
Instead of creating small multiple choropleth map, you can also use selection function to map spatial
objects meeting the selection criterion.

tm_shape(mpsz_agemale2018[mpsz_agemale2018$REGION_N=="CENTRAL REGION",]) +

 tm_fill("DEPENDENCY",

 style = "quantile",

 palette = "Blues",

 legend.hist = TRUE,

 legend.is.portrait = TRUE,

 legend.hist.z = 0.1) +

 tm_layout(legend.outside = TRUE,

 legend.height = 0.45,

 legend.width = 5.0,

 legend.position = c("right", "bottom"),

 frame = FALSE) +

 tm_borders(alpha = 0.5)

38 / 39

Mappping Spatial Object Meeting a Selection Criterion
The output choropleth maps.

39 / 39

